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ABSTRACT

Time odd mean fields have been investigated over the last few years. The effect of time

odd mean field on physical observables in nuclear system with broken symmetry using

CDFT with non-linear meson coupling model have been studied. It was shown that the

effect of this field come in form of additional binding. In our study, we analyze the physical

observable for light odd-mass nuclei with using density dependent meson - interaction

model with DD-ME2 parameter. We found the addition amount of binding energy for odd-

mass light nuclei are less than 1.5 MeV for most of nuclei. The effect of time odd mean

field on Single particle energy states are studied. Also, we investigated the effect of the

shape of nuclei on time odd mean field.
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CHAPTER 1

INTRODUCTION

Over the years self consistent many-body theories were developed, with the purpose to

study the structure of atomic nuclei and related nuclear phenomena at low energy. They

provide a theoretical tool to explore the nuclear chart and categorize it into known and

unknown regions.

Both density functional theory (DFT) and effective field theory (EFT) provide new tools

that overcome the difficulties that faces many-body theories, leading to a better understand-

ing of nuclear forces and achieve a better description of atomic nuclei[1]. EFT is frequently

applied to inter-nucleon interaction and field theory at finite density. In 1965 density de-

pendent functional theory has been introduced in the frame work of Kohn-Shame density

functional theory by solving the quantum many-body problem in terms of energy density

functional, the dependence of energy on the densities, currents and other derivative related

to them became a significant way to view the distribution of nucleonic matter, spin, mo-

mentum and kinetic energy [3, 2]. It provides a successful description of atoms, molecules,

condensed matter and was later applied to other fields in chemistry and physics[4].

Self consistent mean field approximations which basically result from averaging nucleon-

nucleon interaction over the state of individual nucleons, is a basic concept of every DFT,
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and provides a universal base to numerically calculate ground state properties of atomic

nuclei [5, 6, 7, 8].

Different self consistent mean field models based on non-relativistic and relativistic

realization became a standard tool of modern nuclear structure studies. Self-consistent

Hartree-Fouck (HF) and Hartree Fouck Bogolibov (HFB) models that is based on effective

interaction, finite range Gongy forces and a zero-range skyrme, represent a non-relativistic

energy density functional (EDF) approaches, leads to describe high level of nuclear struc-

ture properties [8, 9].

In the seventies of last century Welka and his group proposed a new concept to describe

the nuclear structure. They suggested to start with relativistic Lagrangian, that included

mesonic and nucleonic degree of freedom and contained strong coupling constant. The

theory became known as relativistic quantum field theory[5, 10]. Covariant density func-

tional theory (CDFT) is a relativistic model based on Dirac’s formalism [6, 8, 11]. Rela-

tivistic self consistent mean field theory is able to explain many nuclear properties for low

an medium mass nuclei.

Covariant density functional theory (CDFT) has been applied to study large number of

nuclear properties and has been successful in describing many nuclear phenomena. It was

very successful in the description of atomic nuclei behavior in extreme conditions such

as high spin and deformation ( Super- and hyper-deformation). Superdeformation (SD)

was discovered thirty years ago in 152Dy[12]. There has been many studies of nuclear SD;

and has been discovered in different mass regions and extensively studied experimentally

[13] and theoretically. Hyperdeformation (HD) is another important phenomena in nuclear



3
structure, which will enable to enrich our knowledge of nuclei at extreme conditions of

very large deformation and fast rotation. CDFT was very successful in describing and

predicating the experimental observation of discrete HD bands, in the Z = 40 - 58 part

of the nuclear chart. The spin at which HD bands become yrast was identified, and it was

predicted that 107Cdwas the best candidate to observe discrete HD bands [14, 15]. It shows

a great success in describing ground state properties of nuclear structure, and large rang of

finite nuclei in the nuclear chart [5, 16].

The fission barrier was also studied using covariant density functional theory. The

barrier height was calculated for even-even nuclei in the actinides region and superheavy

region of the nuclear chart. For the actinides it was found that triaxiality lower the height of

the inner barrier by 1 - 4 MeV and the results were comparable to experimental data [18],

and no effect of on it for superheavy nuclei [17].

The ground state properties for nuclei are calculated using energy functional that have

Time-even or Time-odd densities and current in the framework of Skyrme EDF theory

[19]. Time even mean field operation appear in many static properties, which can be stud-

ied experimentally. For example neutron and proton rms radii, binding energy for both

spherical and axially deformed nuclei. It was found that these properties are sensitive to

time-even mean fields. The result of the calculations agree with the experimental results

[19, 20, 21, 22]. This agreement is the reason why properties of time-even mean field are

well known and defined. However, the properties related to time-odd mean field is less

known.
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Time-odd mean field appear in nuclear system with broken time-reversal such as odd

mass nuclei and rotating nuclei. Many of the rotating nuclei properties have been extracted

using Hartree-fock cranking approach based on effective skyrme interaction and Time-odd

mean field have been studied in rotating superdeformed nuclei. However, the results were

not compatible with the experimental data, and showed a dependence on the type of skyrme

interaction[7, 20, 23, 24, 25, 26].

Time odd-mean field plays an important role in the development of density functional

theory [23]. Binding energy in odd mass nuclei, paring correlation in the odd A and

odd-odd nuclei is few of the nuclear properties related to time-odd mean field. In 2001

Duguet and Bounche [27] studied the characteristic of odd nuclei using skyrme Hartee-

Fock-Bogolubov, they did this using mean field calculation of even-even nuclei and study

how the process of adding a nucleon affected the mean field function and energy. The result

showed that there is creation of quasi particle which affect on binding energy by breaking

the time reversal invariance [20, 27, 28]. Magnetic moment, the strength and energy of

Gamow-Teller resonance [20, 29], fusion process[20, 30], are another nuclear properties

that has been studied.

Different progress have done over the years to improve approaches based on skyrme

interaction and other approaches like, the following are short overview for some of signifi-

cant improvements: in 1998 Rakhimov et al[31]. Modified Skyrme Lagrangian to include

σ-meson field. They attempted to introduced interaction scale which is independent on the

medium (scale invariance). The study showed great successes in normal interaction, and

the invariance break in bad way in strong interaction.
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In 1999 Typel and Wolter [32] studied the ground state properties using a density de-

pendent meson-nucleon vertices’s in the framework of CDFT. The density dependent of

meson-nucleon coupling for ρ-, σ-, ω-meson was introduced.

In 2003 Wenhui et al.[33] introduced new sets of parametrization for the relativistic

mean field Lagrangian. PK1, PK1R and PKDD, These sets of parameterizations was able to

describe the properties of nuclear matter and nuclei in and far from beta stability line. This

type of parametrization used to describe stable and unstable nuclei, and nuclei from light

to heavy mass region. In 2005 Lalazissis et al. [34] introduced DD-ME2 parametrization

and applied it to superheavy nuclei.

In 2008 stone and Reinhard[20] investigated both even-even nuclei and odd A-nuclei,

using Skyrme density functional, in both static and dynamic nuclei. The result of even-even

nuclei shows a good agreement with the experimental data, while the odd-odd one shows a

significant deviation which indicate that another set of parametrization and another models

needed for better description.

Despite of understanding the Time-odd mean field in Skyrme density functional theory,

much less progress has been done using CDFT. This can be related to many reasons, for

example Time odd mean field and basically RMF theory are fully Lorentz invariant, so that

it does not require any additional coupling constant. Time-odd mean fields as shown in the

Dobaczewski, and Dudek [7] study provided a non-specific information and so that they not

well defined in non-relativistic density functional theory and need another parametrization

set.
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In 2010 Afanasjev et al. [6] studied the time odd mean fields in CDFT, in odd-mass

nuclei. They studied the effect of time odd mean field on binding energy, which have

always tendency to increase the binding energy in way independent of the choice of the

parametrization. Different phenomena related to time odd-mean field are also investigated.

In the same year they published another paper which studied the rotating nuclear system

[35]. In both papers they used non-linear parametrization of the RMF lagrangian.

As mentioned above, time odd mean fields are vary important for proper description

of many nuclear phenomena, and the effort paid to understand this fields within the frame

work of CDFT and their impact on nuclear phenomena recently become significant. De-

spite that there still much more problem not solved.

The aim of this thesis is to investigate the effect of time-odd mean field on the physical

observable in nuclear systems with broken symmetry using CDFT with density dependent

meson-interaction which will be represented by the parameter set DD-ME2.

This thesis is organized as follows: in CHAPTER (2) contains the formalism of the

model in covariant density functional theory in rotating frame with general terms and def-

inition. In CHAPTER (3), investigation of the properties of Time-odd mean field with

additional parametrization and their effect on physical observable in non-rotating frame. In

CHAPTER (4) summary and main result will be presented.
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CHAPTER 2

FORMALISIM

2.1 General Concept of Covariant Density Functional Theory

Covariant density functional theory as shown from recent studies [6, 35] provide a

very successful description on microscopic behavior and properties of ground and excited

state of nuclei. Three types of models have been developed to provide a realistic density

functional, non-linear meson coupling, density dependent meson-coupling constant and

point coupling models with density dependent vertices. In this thesis, density dependent

meson-coupling model will be used [34].

2.1.1 Mesons

Mesons are subatomic particle, and have an integer spin so that they categorized as a

bosons. In covariant density functional theory nucleons (proton and neutron) are considered

to be a point like particles and interact with each other by the exchange of several mesons.

these mesons are defined by three quantum numbers; spin (J), parity (P) and isospin(T).

The mesons that participate in this interaction are:

1. Scalar σ mesons, which are responsible for the attractive force between nucleons.

The quantum numbers of the σ-meson are (J = 0, T = 0, and P = +1).
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2. Vector mesons ω, which are responsible for the repulsive part of the nucleon interac-

tion. the quantum numbers of the ω-meson are (J = 1, T = 0, P = -1)

3. Vector ρ-mesons, which are responsible for the isospin dependence of the nuclear

force. The quantum numbers of the ρ-meson are (J = 1,T = 1, P = -1).

2.1.2 Lagrangian density

In covariant density functional theory, the nucleons are point-like particles and interact

with each other by exchange of different types of mesons. One can write the Lagrangian

density as [5, 6, 8, 9, 34]:

L = LN + Lm + Lint (2.1)

The first term of Eq.(2.1) represents the nucleons Lagrangian density and is given by:

LN = ψ̄γ (i∂ −m)ψ (2.2)

ψ is the Dirac spinner and m is the bare nucleon mass, γ are Dirac (gamma) matrices.

γµ =

 0 σµ

−σµ 0

 (2.3)

Lm represent the Lagrangian of free meson and the photon, it is given by :

Lm = 1
2∂µσ∂µσ −

1
2m

2
σσ

2 − 1
4ΩµνΩµν + 1

2m
2
ωω

2

−1
4
~Rµν

~Rµν + 1
2m

2
ρ~ρ

2 − 1
4FµνF

µν (2.4)
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where mσ, mρ, mω, are the rest mases of the mesons, the arrows indicate vector in isospin

space, and

Ωµν = ∂µων − ∂νωµ

~Rµν = ∂µ~ρν − ∂ν~ρµ (2.5)

Fµν = ∂µAν − ∂νAµ

Eqs. (2.5) represent the Field tensors of ω-, ρ-mesons and photon. The interaction La-

grangian density is given by:

Lint = −ψ̄
(
gσσ + gωγ

µωµ + gρ~τγ
µρµ + e

1− τ3

2 γµAµ

)
ψ (2.6)

Where gσ, gω, and gρ are the coupling constants, meson masses mσ, mρ, mω, and e (proton

charge) are parameters contained in the Lagrangian (2.1.2). ~τ are isospin matrices, τ3 are

third component of isospin matrices and equal

τ3 =

 1 0

0 −1

 (2.7)

The density dependent have been introduced to the linear model by Boynta and Bomdmer[38],

by introducing non-linear terms to the Lagrangian, they replaced the mass term 1
2m

2
σσ

2 with

U(σ) = 1
2m

2
σσ

2 + 1
3g2σ

3 + 1
4g3σ

4 (2.8)

In density dependent models the meson-nucleon coupling has an explicit density depen-

dence. The meson-nucleon vertex function has been determined by adjusting the parameter

of an assumed phenomenological density dependent of the meson-nucleon coupling to re-

produced the properties of symmetric and anti-symmetric nuclear matter and finite nuclei
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[36] and it showed a significant improvement in the description of asymmetric nuclear

matter, neutron matter and nuclei far from stability.

Density dependent meson nucleon coupling doesn’t have a nonlinear terms in the σ

meson, i.e. g2 = g3 = 0. The meson nucleon vertices is defined as:

gi(ρ) = gi(ρsat)fi(x) for i = σ, ω, ρ (2.9)

where the density dependence is given by

fi(x) = ai
1 + bi(x+ di)2

1 + ci(x+ di)2 . (2.10)

for σ and ω and by

fρ(x) = exp(−aρ(x− 1)). (2.11)

for the ρ meson. x is defined as the ratio between the baryonic density ρ at a specific

location and the baryonic density at saturation ρsat in symmetric nuclear matter. The eight

parameters in Eq. (2.10) are constrained as follows: fi(1) = 1, f ′′
σ (1) = f

′′
ω (1), and

f
′′
i (0) = 0. These constrains reduce the number of independent parameters so that density

dependence parameters become only three.

Parametrization of the density dependent model has been developed so that they are

able to describe quantitatively the proprieties of nuclear matter and finite nuclei at the same

time extreme condition of isospin and density also considered.

This model is represented in the present investigations by the parameter set DD-ME2

[36] listed in Table (2.1) While the previous work was done using non-linear parametriza-

tions [39].
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Table 2.1: NL3* and DD-ME2 parameterizations of the RMF Lagrangian

Parameter NL3*[MeV] DD-ME2[MeV]

m 939 939

mσ 502.5742 550.1238

mω 782.600 783.000

mρ 763.000 763.000

gσ 10.0944 10.5396

gω 12.8065 13.0189

gρ 4.5748 3.6836

g2 -10.8093 0.00000

g3 -30.1486 0.00000

aσ 0.00000 1.3881

bσ 0.00000 1.0943

cσ 0.00000 1.7057

dσ 0.00000 0.4421

aω 0.00000 1.3892

bω 0.00000 0.9240

cω 0.00000 1.4620

dω 0.00000 0.4775

aρ 0.00000 0.5647
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2.1.3 The Hamiltonian and Equation of Motion

The CDFT will be used to study the physical observables in which the time-odd mean

field plays an important role. Time odd mean field manifest itself in nuclear system with

broken time-reversal symmetry in intrinsic frame.

The stationary Dirac equation for nucleon(spinner field) ψi (i=1,.....A) in intrinsic frame

is given by

ĥDψi = εiψi (2.12)

Where ĥD is the Dirac Hamiltonian for a nucleon with mass m

ĥD = α[−i∇− V (r)] + V (R)0 + β[m+ S(r)] (2.13)

Here

β =

 I 0

0 −I

 (2.14)

and

α =

 0 σi

−σi 0

 (2.15)

which are dirac martrices. I is the 2-by-2 identity matrix, and σi are pauli matrices, where

i run from 1-3. The terms included in the Dirac Hamiltonian are expressed as follow:

average scaler attractive field determine by mesons S(r)

S(r) = gσσ(r) (2.16)
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also contains magnetic potential terms which originate from space-like component of the

vector mesons, space like components of ω, ρ, and A are,[(ωx, ωy, ωz), (ρx, ρy, ρz), (Ax, Ay, Az)],

respectively.

V (r) = gωω(r) + gρτ3ρ(r) + e[1− τ3

2 ]A(r) (2.17)

This term when implemented in Dirac equation produce the same effect as the magnetic

field did, therefor the effect produced by it called nuclear magnetism (NM).

the repulsive time like component of of the vector field V0(r)

V0(r) = gωω0(r) + gρτ3ρ0(r) + e[1− τ3

2 ]A0(r) (2.18)

the corresponding meson field and the electromagnetic potential also determine by this

Eqs. [8, 6]

{
−∆ +m2

σ

}
σ(r) = −gσ[ρns (r) + ρps(r)]

−g2σ
2(r)− g3σ

3(r), (2.19)

{
−∆ +m2

ω

}
ω0(r) = gω[ρnv (r) + ρpv(r)], (2.20)

{
−∆ +m2

ω

}
ω(r) = gω[jn(r) + jp(r)] (2.21)

{
−∆ +m2

ρ

}
ρ0(r) = gρ[ρnv (r)− ρpv(r)], (2.22)

{
−∆ +m2

ρ

}
ρ(r) = gρ[jn(r)− jp(r)], (2.23)

−∆A0(r) = eρpv(r), −∆A(r) = ejp(r), (2.24)
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The source terms ρn, ps(r), and ρn, pν(r), and involve various nucleonic densities cur-

rents :

ρn,ps (r) =
N,Z∑
i=1
†[ψi(r)]βψi(r) (2.25)

ρn,pν (r) =
N,Z∑
i=1
†[ψi(r)]xsψi(r) (2.26)

jnν (r) =
N,Z∑
i=1
†[ψi(r)]αψi(r) (2.27)

The n,p in Eqs. (2.25 - 2.27) stands for neutron and proton respectively. V and S potentials

have very different behavior under Lorentz transformation. Relativistic theories containing

only a scaler potential and time like component of a Lorentz vector field, while the mag-

netic potential and V(r) in the Dirac equation and the current jn,p(r) in the Klein-Gordon

equation do not appear in relativistic mean field equations for time reversal systems [6, 5].

For nuclei that have external odd nucleon current will be appear, as acquiescences space

like component of vector-meson field ω will be induced in the same way current induced

magnetic potential. For that the magnetic potential responsible for break time reversal

symmetry causing in that way the induction of jn,pν (r). Time odd mean field and Nuclear

Magnetism are two term used to express this effect.

Space like component of ω and ρ vector field appear in Eq. (2.21) and Eq. (2.23) form

the magnetic potential in Eq. (2.17) in the Dirac equation, interaction between different

currents contributions related to this spatial component more likely to happened. the nature

of interaction different from ω, ρ-mesons, more specifically, for ω meson all possible com-

bination have attractive interaction (either pp, pn, nn current), for ρ meson its attractive for

(pp and nn currents), but repulsive for (pn) [6].
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The coupling constant gω have large value making the ω(r) vector field large and cannot

be neglected in the Dirac equation. also the nature of current for ω and ρ are isoscaler and

isovector, respectively.

2.1.4 Energy-Density Functional

After obtaining the solution, energy density can be calculated. The total energy of the

system is given in Ref [6, 5]. In CDFT the energy can be written as a functional of the

density matrix ρ̂ and mesons field (φσ, φρ, φω) and A, which denoted generally φ3
m.

E[ρ̂, φ] = Tr[(αp+ βm)ρ̂]±
∫

[12(∇φm)2 + U(φm)]d3r + Tr[(gmφm)ρ̂] (2.28)

The total energy is split in different terms for study purpose only, terms are:

Etot = Epart + Ecm − Eσ − ETL
ω −

ETL
ρ − ESL

ω − ESL
ρ − Ecoul (2.29)

Energy contribution come from two parts, fermionic and bosonic degree of freedom, the

first two terms,Epart andEcm represent fermionic contribution, while other term are related

to bosonic contribution.

Epart =
A∑
i

εi (2.30)

Eq. (2.30) represent the energy of particles moving in the field created by the mesons.

Where εi energy of the ith particle and sum run over all occupied proton and neutron state.

Eσ = 1
2gσ

∫
d3rσ(r)[ρps(r) + ρns (r)] (2.31)
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This part represent the liner contribution to the energy of the isoscaler-scaler σ field. Energy

time-like component of the isovector-vector ω field is,

ETL
ω = 1

2gω
∫
d3rω0(r)[ρpv(r) + ρnv (r)] (2.32)

Energy time-like component of the isovector-vector ρ field is,

ETL
ρ = 1

2gρ
∫
d3rρ0(r)[ρpv(r)− ρnv (r)] (2.33)

Where the energy of space-like component of the isoscaler-vector ω field is,

ESL
ω = −1

2gω
∫
d3rω(r)[jp(r) + jn(r)] (2.34)

isovector-vector ρ field space-like component energy contribution is,

ESL
ρ = −1

2gρ
∫
d3rρ(r)[jp(r)− jn(r)] (2.35)

Coulomb energy represented by

ECoul = 1
2e
∫
d3rA0(r)ρpv(r) (2.36)

in the case of finite nuclei, any relativistic mean fields model has to be complimented by

the correction for center of mass motion, the correction for spurious contribution from the

center of mass vibration to the energy is

Ecm = −3
4 ĥω0 = −3

441A−1/3MeV (2.37)

The center of mass correction for density -dependent model,

Ec.m. = −< P 2
c.m. >

2Am (2.38)

Here Pc.m. is the total moment of nucleus with A nucleons.
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2.1.5 The Signature, Parity, and Simplex Operator

Time reversal is an operation in which a physical system under going given sequence

of events transformed to other system in which exact reverse sequence of events take place.

The operation done using an operator known as Time-reversal operator T, its time inde-

pendent, hermitian single particle operator. An operator under the action of time- reversal

could be either even (invariant) or odd (antivariant),

T ôT = εT ô (2.39)

where εT=±1. For every operator x̂ have square equal to minus unity as,

x†ôx = εxô (2.40)

and commute with time reversal τoperator, the basis can be chosen as,

x̂ |n ζ〉 = ζ |n ζ〉 (2.41)

where ζ = ±1. For rotating nuclei the potential exhibit reflection symmetry while the

Hamiltonian is only invariant For rotation of π about the x-axis, the rotation operator de-

fined as

Rx(π) = exp(−iπJx) (2.42)

For wavefunction rotation of 2π will not change it except for possible phase factor (±1) as,

R2
X(π)ψ = r2ψ = (−1)Aψ (2.43)
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The eigenvalue of rotation operator ˆR2

X(π) called signature. more generally, comparing

Eq. (2.41)with Eq. (2.43), the signature is equal r2 = ζ = ±1 which means r = ζi = ±i.

simplex operator X̂ = Ŝx i.e

Ŝx = R̂P̂ , i = x, y, z (2.44)

P = sxsysz (2.45)

again in Eq. (2.41) s = ζi = ±i.

Defining signature, and parity in nuclear physics very important step to describe the

symmetries between proton and neutron, they are good quantum number, which means

that they are constant of motion. for a symmetric reflection shape parity and signature are

no longer good quantum number, the only good quantum number is the simplex because

nucleolus is invariant with respect to rotation of π about x-axis and change in parity, the

only one describe this situation are simplex.

2.1.6 The Wave-Function

The relativistic mean field Eqs. [2.19 - 2.23] are-coupled set of equation for the un-

known field ψi(i = 1...A), σ, ωµ, ρµ, and the coulomb filed A0, the method of solving this

equation start by initial guess for the potential V and S, usually we choose a Wood-Saxon

potential. One solves the Dirac equation for the spinners ψ, the result are used to calculate

the densities ρs, ρv, which are actually form the source in Eqs. [2.19, 2.20, 2.21, 2.22,

2.23], for calculation of the meson fields their currents have to be solved by iteration, and

a new set of potentials (7) and (9), the cycle is repeated until convergence is achieved. A

detailed description is presented in Refs. [40, 25].
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CDFT was built on the assumption that nucleon are treated point-like particles, Dirac

spiners ψ, they usually decomposed into small and large component [5] as,

|ψ〉 =

 f

ig

 = 1√
2π



f+
i (z, r⊥) exp i(Ωi − 1

2)φ

f−i (z, r⊥) exp i(Ωi + 1
2)φ

ig+
i (z, r⊥) exp i(Ωi − 1

2)φ

ig−(z, r⊥) exp i(Ωi + 1
2)φ


Xti(t) (2.46)

These two components are expanded in terms of three-dimensional axially symmetric

harmonic oscillator in Cartesian coordinate characterized by two constants, deformation

parameter β0 = 0.3, γ = 0, and oscillator frequency ĥω0 = 41A− 1
3 , with eigenfunctions

|nx〉 , |ny〉 , |nz〉 in addition of spin degree of freedom |s = ±1
2〉, obtaining the density ρs,v

form basis expansion will leads to calculate the sources. The cycle in that way will con-

tinue. The self consistent field σ, ω, ρ can be written as:

σ(r) =
∑
N

σNφN (2.47)

ω(r) =
∑
N

ωNφN (2.48)

ρ(r) =
∑
N

ρNφN (2.49)

Where N=nx + ny + nz

ΦN(r) = φnx(x)φny(y)φnz (z) (2.50)

The number of oscillator shells NF and NB in which Dirac spinors (fermuonic wave func-

tions), and mesons fields which describe the Bosonic degrees of freedom are expanded

should be also identify, usually NF =12 and NB=16 are sufficient to calculate ground state

properties of light and medium-mass nuclei.
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Single particle orbitals are labeled using Nilson label known also as a asymptotic quan-

tum number, Which are four quantum number preserves in both symmetric and deformed

nuclei, basis label usually represented as |NnzΛ〉Ω, where N is total number of shell, nz is

number of oscillator in z direction, Λ is projection of orbital angular momentum, While Ω

= Λ + Σ represents summation of projection of orbital and spin angular momentum.
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CHAPTER 3

THE PHYSICS OF TIME ODD MEAN FIELD THEORY WITH PARAMETRIZATION

Time odd mean field is phenomenon that appears in nuclear system with broken-time

reversal symmetry. It appears in odd-even and odd-odd mass nuclei. The extra nucleon

breaks spherical symmetry and create non vanishing contribution to the current while in

even-even nuclei the current contribution cancels due to the fact that every state is pairwise

occupied.

Many nuclear phenomena and properties have been introduced as an open problem

because of their strong dependence on time odd mean field. These properties includes:

Magnetic moment, band termination, nuclear fission, binding energy of odd mass nuclei,

their significant role in nuclei with N=Z and pairing correlation.

Relativistic mean-field theory (RMF) has been successful to describe a range of nuclear

structure phenomena for nuclei along the Valley of β stability and exotic nuclei. As the

relativistic mean field model was extended to include effective Lagrangian with density

dependent meson nucleon vertex function. We investigate time odd properties in the CDFT

with parametrization of the RMF Lagrangian including DD-ME2.

The first step to make calculation related to time odd mean field is to specify nuclear

configuration, they are specified by the occupation of available single particle orbitals. The
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occupation number n is either to be 0 or 1, for even-even nuclei all single particle state

are pairwise occupied. However, this is not the case for odd nuclei where all single particle

state pairwise occupied expect for the last occupied state which will be called blocked state.

Single particle state in the RMF computer code are labeled using Nilson label and

signature. The total signature and parity of nuclear configuration is the same as specified

by the blocked state. The single particle states are divided into four groups based on their

parity and signature (r=+i, p=+π; r=+i, p=-π; r=-i, p=+π; r=-i, p=-π).

The procedure of the calculations is done in two steps:

• self consistent calculation with time odd-mean field (NM) included, in this step space

like component of vector mesons [Eqs. (2.21), (2.23), (2.17)], currents [Eqs. (2.21),

(2.23), (2.27)], and magnetic potential V(r)[Eq. (2.17)] are included.

• self-consistent calculation without time odd-mean field (abbreviated by WNM), in

this step spacelike component of vector mesons[Eqs. (2.21),(2.23), (2.17)], currents

[Eqs. (2.21),(2.23,(2.27)],and magnetic potential V(r)[Eq.(2.17)] are discarded.

Taking into account calculation of NM and WNM should be done using same nuclear

configuration.

3.1 Binding Energy in Odd Mass Nuclei

Theoretical models based on self-consistent mean fields theory such as RMF models

have been showed great ability of reproducing the ground state properties of finite nuclei

through out the nuclear chart with very limited number of parametrizations. The combi-

nation of this theoretical method and computational resources provides sufficient base to
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perform calculation forming significant role to understand nuclear structure. One of the

properties which have been attracted renewed interest is nuclear mass or binding energy.

Time odd mean fields densities and current contribute with non-vanishing value to

ground-state of odd and odd-odd nuclei, since this contribution are essential terms for

restoring the local gauge invariance violated by symmetry breaking in intrinsic frame, as a

result of this contribution Kramer’s degeneracy of single particle state are destroied[5, 44].

Time odd mean field have direct influence on binding energy, single particle spectra,

and nucleon separation energy. These nuclear phenomena are very important and was

discussed in [42, 43] for astrophysical application. Nucleon Separation energy plays an

important role in estimation nuclear stability near the drip-line[45] and investigation low

energy single particle spectra [44].

Understanding the effect of time odd mean field on binding energy of odd and odd-

odd mass nuclei become a necessity. The impact of time odd mean field on binding en-

ergy has been studied in the CDFT frame work for light odd mass nuclei using non-linear

parametrization of the RMF Lagrangian[6], and in non-linear Skyrme EDF [46].

DD-ME2 provides good agreement between calculation and experimental data on ground

and excited for many spherical and deformed nuclei [36], so in this part of study we at-

tended to provide an additional investigation on impact of this kind of parametrization on

binding energy for wide range of odd mass nuclei.
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3.1.1 Binding Energy in Even Z Odd N Light Nuclei

It is will known that there are 275 known stable nuclei, where 60% of them are even-

even nuclei, while the other 40% are divided equally to odd proton-even neutron or even

proton-odd neutron nuclei. How the nuclei evenness and oddness is the key feature to deter-

mine the nuclear stability it also related to nuclear proprieties such as nuclear mass(binding

energy).

In this section we present our results for influence of odd mean fields (NM) using den-

sity dependent model for effective interaction with DD-ME2 parametrization for even Z,

odd N nuclei range from 10≤Z≤26. For each isotopic chain, the result will be compared

to calculation done using Skyrme Hartree Fock [44, 47] and the calculation done using

relativistic mean field(RMF) in Ref[6].

The result of these nuclei are presented in Figs. [3.1 - 3.3] in which the effect of time

odd mean field (NM) on binding energy are present. It shows the difference in binding

energy when NM is included, i.e. (ENM ) and calculation done without NM (EWNM ). All

of the calculation were done with fixed configuration; that is the configuration was chosen

so that it lay between two neighboring even nuclei, the reasons to do that is guarantee that

the contribution of current come only from one unpaired nucleon, Here the contribution

come from neutron, where proton configuration are fixed for all nuclei. Fig. (3.1) shows

the impact of NM on binding energy for four isotopic chains, namely; Ne (Z = 10), Mg

(Z = 12), Si (Z = 14) and S (Z = 16). For Ne chain, the calculations were performed from

N - Z = -5 to 29. The value of the additional binding ranged from few ev for 49Ne to 550

KeV for 23Ne. Similar behavior can be noticed for the other three chains. In Mg chain,
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Figure 3.1: Influence of Time odd mean field on binding energy for even Z (odd N), namely,

Ne (Z = 10), Mg (Z = 12), Si (Z = 14) and S (Z = 16). The calculation done using DD-ME2

parametrization. each chain cover all nuclei from Proton drip line up to Neutron drip line.
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the additional binding ranges from 100 to 350 KeV and the maximum value occurs for

27Mg and for the Si chain the range changes a little to be 100- 500 KeV and 23Si has the

maximum value. It is interesting to see that for S chain the maximum value jumps up to

1.5 MeV for 45S.

The results obtained for these four nuclei suggests that the effect of NM is stronger for

the light nuclei within each chain, that its stronger near the proton dripline, than the heavier

nuclei near the neutron dripline. Figs. (3.2) and (3.3) shows the results for Ar (Z = 18), Ca

(Z = 20), Ti (Z = 22) and Cr (Z = 24). An overall trend is observed that the effect of nuclear

magnetism is less than 500 KeV, except of some isotopes. Ar chin have approximately

[(100-900)KeV] with two maximum at 45Ar = -981.8 KeV, 47Ar = -915.5 KeV, Ca chain

have ≈ [(50-750) KeV] with maximum at 82Ca = -748.7 KeV , where Ti chain have an

approximate gain of [(53 - 1500 )KeV] with maximum at 87Ti = -1539.8 KeV . Cr chain

has [(0 - 700) KeV] with maximum at 61Cr= -686.8 KeV.

The heavies nuclei, with even Z, is Fe. Isotopes of Fe gained an additional energy [30-

520] KeV with maximum at 65Fe = -1.2 MeV. Again the magnitude of additional binding

energy are greater for nuclei near proton drip line and decrease as the nuclei have larger

mass same as the first group of nuclei.
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Figure 3.2: Same as Fig. (3.1), but for Ar (Z = 18), Ca (Z = 20), Ti (Z = 22) and Cr (Z =

24)
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Figure 3.3: Same as Fig. (3.1), but for Fe (Z = 26).
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3.1.2 Binding Energy in Even N Odd Z Light Nuclei

In this section we study the effect of time odd mean field on odd light Z nuclei ranging

between Z = 11 - 27 in a similar fashion to what we have done in section 3.1.1

The Fig.(3.4) shows the calculation of Na (Z = 11), Al (Z = 13), P (Z = 15) and Cl ( Z

= 17). Na chain gains an additional binding due to effect of NM around 200 KeV. It can

be noticed that the effect of NM is almost independent of the neutron number, as their no

change in the additional binding as the number of neutrons changes. Similar behavior can

be seen for the Al isotopes. However, 31,39,41Al deviates from this behavior and gain 700,

400 and 400 KeV respectively.

For P isotopes the additional binding ranged from 160 KeV to 500 KeV and has a

maximum gain for 45P. Most of Cl isotopes gained extra binding energy around [200 - 400]

KeV with exception at 37Cl = 811.4 keV and 56Cl = 2615.5 keV this isotopes have the

highest value of additional energy over all investigated nuclei.

Odd Z nuclei with Z = 19-25 are presented in Fig. (3.5), K (Z = 19) isotopes are effected

by the same amount due to NM and it is shown by the gain in binding energy. All of the

isotopes almost gained around 300 KeV, with two exception value at 58K = 1388 keV and

87K = 592.2 KeV This behavior is similar in the case of Sc (Z = 21), V (Z = 23) and Mn

(Z= 25).

Sc isotopes have an additional energy round [150 - 400 ] KeV, and for 53Sc, 57Sc, 63Sc,

gained around [620 - 750] KeV, only 89Sc have grater than this value it reach to 860 KeV. V

isotopes the effect vary small for most of them [100-170] KeV, expect three of its isotopes

61V = 1284.1 KeV, 83V = 501.95 KeV, 87V = 1254.8 KeV, Mn isotopes have experience
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range start from 47Mn where the calculation showed that it gained no additional binding up

to isotopes gained less than 450 KeV, 65Mn = 1322.0 KeV and 65 Mn = 984.1 KeV have

highest value among other.

Fig. (3.6) represent the last nuclei investigated also its had long chain of isotopes where

most of them have between [100 - less than 600] KeV, expect 69Co = 1121.3 KeV.

Generally for all odd Z nuclei, there is an additional binding energy due to NM, the

magnitude of this addition is less than 600 KeV, expect for some isotopes which cant get

grater than this up to 2 MeV. The magnitude of additional binding in each chain of isotopes

is almost constant (except for some specific isotopes specified above). The magnitude of

additional binding in each isotopic chain is higher for nuclei that lie in the middle between

proton and neutron drip lines. However, this is not the case of even Z (odd N) nuclei where

the magnitude of additional binding energy is generally higher than it in odd Z nuclei. The

minimum value of odd Z nuclei is 100 KeV and for even Z nuclei is only few KeV. Odd Z

nuclei gained also the maximum grater than those for even Z. The effects of NM are grater

in light nuclei (small A) value and get smaller as the nucleus becomes heavier (large A).
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Figure 3.4: Same as Fig. (3.1), but for Na (Z = 11), Al (Z = 13), P (Z = 15), Cl (Z = 17).
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Figure 3.5: Same as Fig. (3.1), but for K (Z = 19), Sc (Z = 21), V (Z = 23) and Mn (Z =

25).
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Figure 3.6: Same as Fig. [3.1], but for Cr (Z = 27).
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3.2 Comparison with RMF Non-Liner Model and Non-Relativistic Skryme EDF

We will compare our results with two different models, mainly with the results of

Ref.[6], were the authors used non-linear parametrization of the RMF lagrangian, and

Ref.[47], were the authors used non relativistic Skyrme interaction.

Comparing our results with those in Fig.2 of Ref.[6] we notice that both results provide

an additional binding, i.e. (ENM − EWNM ≤ 0). However, our results show that the

additional binding is larger.

The magnitude of this additional binding is summarized in table (3.1). In this table we

list the range of additional binding for each isotopic chain gained in both calculations. Two

significant trends can be noticed, the first one that in case of even Z, all of the nuclei gained

an additional binding energy around 500 KeV expect for some nuclei which are , 27Ar have

an additional energy ≈ 800 KeV, 59Ti which gained an additional ≈ 1 MeV, 61Cr ≈ 500

KeV and 65Fe ≈ 1.1 MeV. For odd Z nuclei the absolute additional energy is less than 30

KeV in some P isotopes, less than 350 KeV for Na, Al, Cl, K, V, Mn expect 37Cl gained

750 KeV, 61V gained around 1200 KeV, where Sc and Co gained less than 600 KeV.

In comparison with Fig.2 in Ref.[6], one can see that the results for odd Z and odd N

nuclei have the same trend. The variation of the results is more pronounced in odd Z nuclei

than in even Z. In our calculations the additional binding in odd Z nuclei is greater than the

even Z nuclei, which is the opposite of what is seen in Fig.2 of Ref.[6]

Another significant difference between the DD-ME2 and the NL3 results is the cor-

relation between the additional binding and the mass number. The results of Ref.[6] is

inversely correlated with the mass number, where it largest in light nuclei and smallest in
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heaviest one. However, this trend doesn’t apply generally for all nuclei in our calculation.

For odd N this pattern apply for most nuclei expect some of them have an extraordinary

additional binding. However, for odd Z nuclei this is not the case where the magnitude of

additional binding in each element different from light to heavy; some of them have the

maximum variation in the middle and approximately same magnitude at the edge of proton

and neutron drip lines.

The position of proton and neutron drip line is very important in nuclear physics be-

cause at this lines the nuclear existence ends. Despite that proton drip line is well located

using experimental data, the location of neutron drip line for majority of elements is not

located and because of limitation in experiment the only way to delineated it using model

calculation [48]. The position of neutron drip line is model and parametrization dependent.

We found that for even Z nuclei the position of neutron drip lines of 49Ne, 55Mg, 67Si,

83S, 81Ar, 89Ca, 101Ti, 101Cr, 111Fe. While the position of neutron drip lines for calculation

done using non-linear NL3 parametrization are 33Ne, 39Mg, 48Si, 53S, 53Ar, 63Ca, 69Ti,

81Cr, 85Fe. i.e the calculation indicate that position of neutron drip line shift by [16-32]

isotopes in each chain comparing with that number done in ref [6]. However there are some

element have shift in proton drip lines by [1-3] isotopes those are 21Mg, 29S, 33Ar, 35Ca,

41Ti, 45Cr, compare to position proton drip line 19Mg, 27S, 31Ar, 33Ca, 39Ti, 43Cr, located

by NL3 parametrization. in other hand position of neutron drip lines in odd Z nuclei are

located for each one of them as follow, 50Na, 59Al, 67P, 69Cl, 87K, 101Sc, 103V, 105Mn, 111Co,

comparing to the position in where NL3 calculation the neutron drip lines located for each

of this nuclei at, 39Na, 47Al, 61P, 57Cl, 59K, 81Sc, 73V, 83Mn, 88Co, here the neutron drip line
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shift by [8-29] isotopes. also proton drip lines are shifted; where located at21Na, 23Al, 29P,

33Cl, 35K, 43Sc, 45V, Mn47, compare with NL3 non-linear calculation;19Na, 21Al, 25P, 31Cl,

33K, 39Sc, 41V, 45Mn; here proton drip lines shift by [1-4]isotopes.

The effect of time odd mean field on odd light nuclei have been also investigated within

Skyrme EDF. Statuta [47] have been study the effect of time mean field using Skyrme

energy density functional with SLy4 and SIII on light nuclei with 10≤ Z ≤28. The cal-

culation are presented in Fig[7] in upper panel done with SLy4 parametrization, the light

nuclei gained additional binding due to NM less than 300 KeV on general in agreement

with amount of additional binding presented by calculation done using RMF with non-

linear NL3 parametrization. Another study published in 2010 by Pototzky et.al [44] where

the effect of time odd mean field on binding energy for odd nuclei with 16≤ Z ≤29 have

been studied using Skyrme Hartree Fouck approach with SKL3 and SLy6 Skyrme forces,

this calculation represent that the effect of time odd mean field much small than 1 MeV,

and still dependent on parametrization in consistent with those done by Statuta. However,

our calculation represent the highest magnitude of additional binding energy due to NM

because the model dependence on parametrization with high effective mass, thus the addi-

tional binding energy reach up to 2 MeV.

We have also pointed that calculation done using RMF with non-linear parametrization

and thats done using Skyrme EDF with SLy6 and SKL3, and our calculation all of them

emphasize that there is no enhancement of NM effect at N=Z. all of the previous calculation

we discuses side by side with our calculation expect for some nuclei they agreed that the

effect is stronger in lightest nuclei and decrease as the nuclear size increase with some
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reservation on some nuclei. Time odd mean field in RMF with density dependent model

or non-linear model are always attractive contrary to calculation done using Skyrme EDF

where some leading to less (repulsive) or more (attractive) binding depending on type of

parametrization.
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Table 3.1: The effect of time odd mean field on light nuclei with 10 ≤ Z ≤ 27, column

(1) represent light nuclei, column (2) and (3) represent range of additional binding due to

effect of NM on light nuclei isotopes, additional binding represented due to calculation

done using RMF with NL3 non-linear model and RMF with density dependent DD-ME2

parametrization.

Light nuclei Non-Linear NL3 (KeV) DD-ME2 (KeV)

Ne around [50-320]KeV ≈[0.00-550]

Na around [100] [170-220]

Mg [50-300] [100-350]

Al around [100] [150-400]

Si around[50-320] [100-500]

P [50-250] [130-500]

S [50-300] [300-1500]

Cl [0-150] [170-2610]

Ar [50-250] [100-900]

K [50-250] [240-1400]

Ca [100-350] [50-750]

Sc [50-100] [140-860]

Ti [50-250] [53-1500]

V [50-100] [100-1300]

Continued on next page
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Table 3.1 – continued from previous page

Light nuclei Non-Linear NL3 (KeV) DD-ME2 (KeV)

Cr [50-250] [0.0-700]

Mn [50-100] [0.0-1320]

Fe [50-250] [34-1300]

Co [50-100] [110-1120]

3.3 Effect of Time Odd Mean Field (NM) With Density Dependent Parametrization
on Changing the Shape of Nuclei

Triaxial nuclear shapes are used in nuclear physics to describe transitional nuclei; nuclei

that are not so strongly deformed. The ground state deformation of axially symmetric

nuclei may change and break the symmetry. Gamma angle used to describe the departure

from axially symmetry in both static and rotating nuclei, nuclear shape that has γ = 0o or

60o describes axially symmetric prolate and oblate shape respectively. Intermediate γ value

between those values describe triaxial symmetric shape[49].

Triaxial degree of freedom plays a significant role in our investigation. Calculation of

binding energy due to NM with their dependence on deformation angle is plotted in Fig.

(3.7) and [3.8]. Both of them presented and cover all the nuclei from proton drip line up to

neutron drip line. For even Z and odd Z nuclei separately. Each nuclei between Z = 10 - 27

is shown in separate panel. We found that Time odd mean field (NM) is strongly affected

by the shape of nuclei. In Fig. (3.7) for even Z nuclei most of nuclei near the proton drip
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line are found to be triaxial so that they gained an additional binding energy higher than

other neighborhood nuclei, in this region small value of γ-deformation leads to significant

amount of binding energy. In section 3.1.2 we pointed to nuclei that gained a significant

amount of additional binding. 45Ar and 47Ar gained more than 900 KeV, as we can see

from panel (e) in Fig. (3.7) the value of γ-deformation is 42o and 50o respectively.

65Fe, 59Ti, 89Ti, 87Ti, 87Ti nuclei gained more than 1 MeV are triaxial nuclei. Their

deformation angle is 34o and 58, 57, 59 for Ti isotopes as we can see from panel (i) and (j)

respectively. The effect of triaxillity of the nuclei become more significant as the nuclei get

heavier. However, the NM don’t affect on nuclei which found that there ground state are

triaxial in calculation without NM. The nuclei become completely triaxiall when γ =30o,

in this angle maximum additional due to trixiallity we get, 65Fe have nearly γ ≈35 as we

can see this maximum.

In Fig. (3.8) odd Z nuclei additional binding energy due to NM with there dependence

on deformation angle γ are represent. Panel (a)-(i) represent nuclei with odd Z between

10-27. We found that they are strong in deformation and transitional nuclei more than odd

N nuclei. as in the case even Z nuclei, odd Z one with more than 1 MeV are 85K ,61V,87V,

the angle of deformation is γ = 52, 58, 59o. 65Mn, 69Co gained more than 1 MeV but with

γ-deformation is 33o, 25o.

Calculation of time odd mean field using density dependent model leads to additional

binding energy, some nuclei exhibit a significant amount of additional binding reaching

more than 1 MeV, this additional magnitude of energy is due to the change of this nuclei

shape from prolate to triaxial shape. However, there are two nuclei 65Cl [panel(d), Fig.
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(3.8)], and 45S [panel(d), Fig. (3.7)] are experience more than (1 - 2) MeV, but we found

that they are axially symmetric (prolate shape) and not triaxial shape, the reasons that this

nuclei exhibit such amount of additional binding energy because of the calculation of NM

and WNM exhibit two different β2 deformation minima, β2 = 0.14 in WNM calculation

and β2 = 0.23 in NM calculation, that there are an additional amount of energy due to

deformation in addition of additional binding energy own by NM.

3.4 Effect of Nuclear Magnetism (NM) on Single Particle Energy State

In this part of thesis we aim to study the effect of time odd mean field on single particle

energy state (NM). For that calculation of single particle energy states with NM and without

NM are considered for axially symmetric and triaxial nuclei, in each odd N(odd P) nuclei.

We analyzed 51Fe, 65Fe, 69Co, 57Co to guide overall discussion and are presented in Figs.

(3.9 - 3.12).

Fig. (3.9) represent axially symmetric (with γ = 0o) 57Co odd Z nuclei, panel (a) and (b)

present neutron single particle energy states, panel (c) and (d) present proton single particle

energy states. proton energy states exhibit splitting only in blocked state 7
2

+[3 0 3] with

energy = - 4.10 MeV, one of state are raise up by - 4.39 MeV and the other drop down by

- 3.84 MeV with net energy difference between upper and lower (∆Esplit) = - 0.55 MeV.

neutron energy sates with same structure as blocked state, also experience such splitting.

Fig. (3.10) represent also axially symmetric 51Fe odd N nuclei, Same as 57Co nuclei,

panel (a) and (b), (c) and (d), present neutron and proton single particle energy state in-

cluding and without including NM. only blocked state experience splitting; 5
2

+[3 1 2] with
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Figure 3.7: Additional binding energy with their dependence on deformation angle gamma

(degree) for odd N light nuclei, even Z nuclei between [10-27] are present in each panel

from (a) - (i). The calculation cover all isotopic chains from proton drip line up to neutron

drip line.
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Figure 3.8: Same as Fig. (3.7), but for odd Z light nuclei between [10-27].
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13.15 MeV split into E =13.44 and 12.87 MeV, apparently again one raise up and one drop

down with (∆Esplit) ≈ - 0.6 MeV. For proton single particle energy state splitting appear

states 5
2

+[2 0 2], 5
2

+[3 1 2] with ∆Esplit ≈ - [0.4 - 0.5] MeV in each state respectively.

In Fig. (3.11 - 3.12) show single particle energy state for triaxial 69Co (γ ≈ 26o) and

65Fe (γ ≈ 34o) nuclei. Fig. (3.11) same as Fig. (3.9), but for 69Co. Neutron and proton

exhibit splitting in all of its single particle energy state, not only blocked state 7
2

+[3 0 3].

For odd N 65Fe this behavior is still applicable; all single particle energy state of proton

and neutron Fig. (3.12) panel (a) and (c), comparing to panel (b)and (d) affected by NM

and split including block state 1
2

+[4 2 0]; in this state one raise up by 6.77 MeV and one

drop down by 5.86 MeV with ∆Esplit ≈ 0.9 MeV.

Generally, Time odd mean fields break kramer’s degeneracy in blocked states, thats

why this states exhibit such splitting. single particle energy state in all axially symmetric

nuclei (with γ = 0 or 60 o) both odd N and odd Z nuclei exhibits an splitting in blocked state

as result of NM with magnitude ∆Esplit, this magnitude depend on each nuclei separately,

leads to raise up one state and drop the other with each by ≈ ∆Esplit

2 , also for odd N nuclei

proton energy state, and for odd Z nuclei neutron spectra exhibit splitting in all energy state

has same Ω number. However since Ω is not good quantum number in triaxial nuclei and

each state are mixed state of different Ω basic state, we found that all the proton and neutron

energy state including blocked state are split.

In all above figure we deal with only occupied state. In Fig. (3.13) occupied and

unoccupied single particle energy state of proton with same structure as blocked state pre-

sented for 93Co nuclei as function of there splitting energy, state with different signature
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Figure 3.9: Single Particle Energy State of 57Co. panel (a) and (c) present single particle

energy state for proton and neutron with calculation including NM, panel (b) and (d) present

single particle energy state for proton and neutron without including NM. state with black

solid (dotted) line are state with (+p+i), (+p-i), blue solid(dotted) line are state with (-p+i),

(-p-i).
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Figure 3.10: Same as 3.9, but for 51Fe (odd N number).
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Figure 3.11: Same as Fig. (3.9), but for 69 Co(odd Z number) triaxial nuclei. With block

state 7
2

+[3 0 3] with positive signature(black soiled line).
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Figure 3.12: Same as Fig. (3.9), but for 65Fe (odd N number) triaxial nuclei. With block

state 1
2

+[4 2 0] with positive signature(black soiled line).
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also present (state with +i and -i time reversal counter part) as we can see all of them af-

fected by NM in same fit so that they exhibit splitting. and this can be explained using Eq.

[2.17]; where the main contribution in magnetic potential come from space like component

of ω-meson which is basically isospin independent. However all occupied and unoccupied

single particle state are split in triaxial nuclei. From Fig. (3.13) we also found that occupied

single particle state are more bound than those unoccupied (that have higher energy value

than the bound). all of this observation also do not related to signature where state either

with (+i) and (-i) experience same influence of NM. Calculation of single particle energy

state have been done using RMF with nonlinear parametrization, Fig[10] in ref[6] similar

to Fig. (3.13) where the calculation presented are for neutron, occupied and unoccupied

single particle energy states for 119Ce nuclei, calculation done using RMF with non-liner

parametrization and RMF with density dependent model are similar in description this sit-

uation. However ∆Esplit value are higher than those in calculation using NL3 due to fact

that sates are basically gained and additional mount of binding energy due to DD-ME2

calculation.
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Figure 3.13: Single Particle Energy Proton State of 93Co as function of energy splitting

∆Esplit with same structure as blocked state [1/2 3 2 1]. calculation of NM and without NM

are presented. state with dot line are state with negative signature (-i), the one with solid

are positive signature(+i). column (a) present occupied(filled circle) and unoccupied(open

circle) state with and with (+i), column(c) same as (a), but for state with negative signature(-

i).
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CHAPTER 4

CONCLUSION

Time odd mean fields have been studied within the frame work of CDFT using density

dependent meson - coupling model with DD-ME2 parameter, the result as follow:

1. Time odd mean field (Nuclear magnetism) affected on light odd mass nuclei, ei-

ther odd Z or odd N in the same way, they gained an additional binding due to NM in

agreement with calculation done using non-linear model which confirm the attractive

nature of this fields. However the absolute magnitude of additional binding reach to

1.5 MeV. Odd N nuclei gained higher additional binding than odd Z nuclei.

2. Change the shape of nuclei from axially symmetric nuclei with gamma deforma-

tion parameter (γ = 0, 60o) to triaxial deform nuclei is significant feature in calcu-

lation done using DD-ME2; Time odd mean field (NM) is strongly affected by the

shape of nuclei. such nuclei gained the largest additional binding among other nuclei.

Some of nuclei found to have two different β value (two different minimum), thats

result to add extra binding to additional binding reach up to 2 MeV.

3. Single particle energy state with φ = φblock value in axially symmetric nuclei odd

N, odd Z nuclei are splits due to NM by ∆ Esplit, while all states in triaxial nuclei are

splits.
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In this thesis, we studied the effect of time odd mean field using density dependent

model with DD-ME2 parameter for light nuclei only, and compared them to calculation

done with non-linear parametrization, other calculation in heavy and medium mass re-

gion needed to complete the whole picture. Calculation with other density dependent

parametrization such as DD-ME1, TW99, PKDD, should be done to confirm that addi-

tional binding energy weakly depend on relativistic mean field parametrization as non-

linear model provide. calculation using point coupling model also proposed as future work

to provide better description side by side with description provided by the two previous

model.
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